Experimental optimization Lecture 13: Experimenting without experiments

David Sweet

Review **Experimentation cost**

- Experimentation costs:
 - time spent
 - risks posed to subjects, systems
 - pay for experimenters/engineers
 - opportunity cost from running suboptimal versions/configurations

Review **Experimentation cost**

- Ex: Advertising
 - poor ad policies might drive users away lacksquare
 - "B" version of an ad system might produce less revenue than "A"
- Ex: Health care, experimental treatment
 - might cause illness or death
 - might miss opportunity to cure
 - wastes time/money that could have been spent on better treatment

Review **Experimentation cost**

- Improved / specialized experimentation methods can reduce experimentation costs
 - MAB reduces exp. costs while experimenting
 - RSM more efficient for continuous parameters
 - CB efficient for short-term rewards, many paramters
 - BO even more efficient than RSM

Observational data What if we just looked at the logs?

- Observational data is the data you collect all the time from, ex., logs
 - even when no experiment is running
 - system still produces measurement of business metric, features describing users, ads, posts, transactions, etc.
- Just study / model the logged data?
 - Problem: spurious correlation
 - Problem: missing counterfactuals

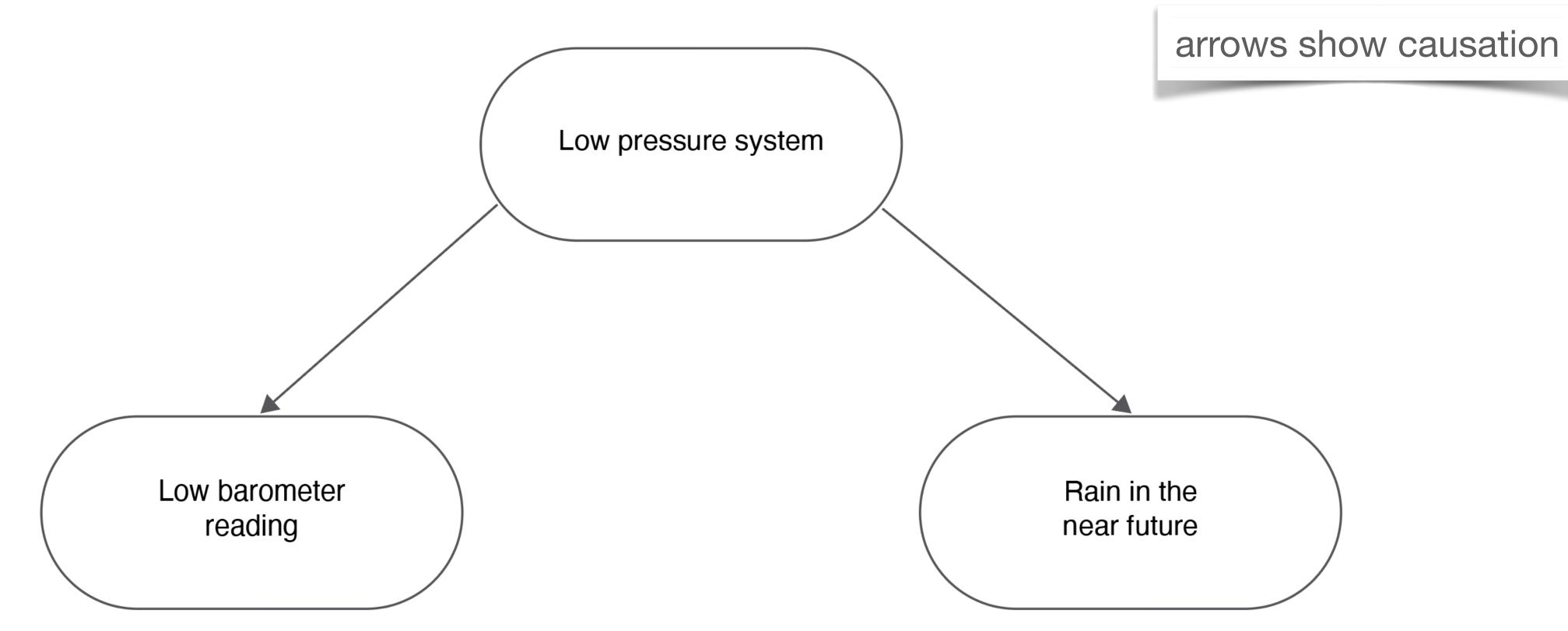
Observational data Spurious correlation

- Classic example
- Barometer gives low reading just before rain
- You don't like rain, so you fiddle with the barometer to keep the reading high

correlation (spurious)

causation?

Observational data Spurious correlation



Many more examples at https://tylervigen.com/spurious-correlations

Observational data Missing counterfactuals

- doesn't rain.
- That's more observational data

But say you **do** fiddle with the barometer to keep the reading low, and it

• Missing the counterfactual: What would have happened if I hadn't fiddled?

Causation **Experiments test for causation**

- A/B test *intervenes*, i.e. takes an action on the environment
 - Ex: fiddle with the barometer
- A/B test collects counterfactual
 - Ex: try both fiddling and **not** fiddling
- A/B test randomizes to break spurious correlations
 - Ex: Might fiddle (or not) before rain or sun
 - If barometer reading really caused rain, you'd get fewer samples of "fiddle before rain"

But wait: Supervised learning Model all of the variables/factors/features

- If you really knew all of the factors affecting the system, this could work • But in the example above you were missing genuine knowledge of the low
 - pressure front
 - Even still, you had no observational data that contained the action "fiddle with barometer"
 - (Could you even know that you had identified all of the factors?)
- Contextual bandits supplement SL with exploration (randomized actions), i.e. experimentation

Natural experiments But maybe in *my* data...

- Sometimes a randomized intervention just happens, and you can act as if you had planned it.
- Ex: Effect of Vietnam draft on later earnings
 - http://www3.nccu.edu.tw/~hmlien/pfinance/pf1/readings/draft.pdf
 - lottery (randomization) determined whether drafted (intervention)
 - Result: being drafted reduced later earnings by 15%

Natural experiments More examples

- Ex: Oregon health insurance experiment
 - https://www.nber.org/programs-projects/projects-and-centers/oregonhealth-insurance-experiment?page=1&perPage=50
 - Oregon offered 10,000 Medicare policies (intervention)
 - 90,000 signed up, so chose by lottery (randomization)
 - Result: health care caused (i) increased used of health-care services, (ii) decreased financial strain, (iii) improved depression, but no change in physical health, (iv) no effect on employment or earnings

Matching method Example

- Ex: Effect of raising minimum wage on employment
 - https://davidcard.berkeley.edu/papers/njmin-aer.pdf
 - NJ raised minimum wage (intervention), PA did not
 - analyzed fast-food restaurants near the border of the two states
 - "matching" in lieu of randomization
 - restaurants near border exposed to similar factors
 - posit that the side of the border on which they fall is arndom

Matching method Example

- Result: raising minimum wage did not reduce employment
- David Card awarded 2021 Nobel prize in economics for use of natural experiments like this
- more examples of natural experiments and matching methods: <u>http://</u> <u>economicspsychologypolicy.blogspot.com/2015/06/list-of-19-natural-</u> <u>experiments.html</u>

Causal inference

- Natural experiments and matching methods examples of causal inference: attempt to infer causation from observational data
- save on experimentation costs
- without good domain knowledge, might miss confounders
 - not as believable as an experiment
 - but sometimes you just can't conduct the experiment \bullet

Sequences of decisions

- Recall contextual bandit problem:
 - observe some features, the state; ex., user & ad features
 - take some action, ex., show user an ad
 - receive some *reward*; ex., user clicks on ad
- Consider a longer-term view of this problem:
 - maybe show user an ad, then show it again tomorrow, maybe skip a day...
 - and eventually they buy the product or you give up trying to sell it to them

- CB data was: {(*state*_i, *action*_i, *reward*_i)} or {(s_i, a_i, r_i)}
 - each triple $-(s_i, a_i, r_i)$ represents one decision
 - there are many independent decisions in the data set
- RL data is: { $(s_{1,1}, a_{1,1}, r_{1,1}, s_{1,2}, a_{1,2}, r_{1,2}, s_{1,3}, ...)$ }
 - each sequence contains multiple **dependent** (s_i, a_i, r_i) triples, i.e. multiple sequentially-dependent decisions
 - there are many independent sequences in the data set

- Ex: Decision making in health care
 - actions are available interventions (tests and treatments)
 - reward is health
 - high cost to taking the wrong action, so can't explore
 - well, sometimes we run RCT (ex., drug trials), so actually there is experimentation, but it's very costly and narrowly applied
 - w/o exploration would be safer, maybe more widely/often used

- Ex: Chatbot
 - state = recent dialog w/a person
 - action = next thing for chatbot to say
 - reward = some goal of chat; ex., help a customer return a pair of shoes
 - exploration saying randomized things -- could turn away customers
 - prefer to learn a policy from pre-existing conversations between humans

- Problems (still):
 - spurious correlation
 - missing counterfactuals
- CB solution: explore (randomize) actions and refit
- RL? Could you randomize actions of whole sequences?
 - Number of possibilities grows exponentially in the length of the sequence.
 - Methods exist, but require many, many iterations of "explore, refit"

Sequences of decisions **Offline reinforcement learning**

- IOW, direct (*model-free*) RL methods have very high experimentation cost
- One alternative: Offline RL
 - look for sequences in that observational data
 - collect data from logs of existing production system, whatever version it is \bullet
 - fit a new policy (mapping from s_i to a_i ; a controller) from the sequences

Sequences of decisions **Offline reinforcement learning**

- Offline RL solution methods
 - missing counterfactuals
- focus on simplifying methods:
 - https://arxiv.org/pdf/2112.10751.pdf

borrow ideas from causal inference to deal with spurious correlation &

• stay close to existing policy to mitigate problem of missing counterfactuals

Good read for application examples, overview of existing methods, and a

Summary

- Observational data is copious and cheap. Experimental data is the opposite. Methods exist to tease out experiment-esque — causal —
- results from observational data
- Causal inference is a set of such methods.
 - natural experiments due to randomized interventions
 - matching methods compare groups that differ in only one aspect
- Offline reinforcement learning attempts to build sequential decision-makers (controllers) from observational data